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Abstract
Operating the Mars Exploration Rovers is a challenging,
time-pressured task.  Each day, the operations team must
generate a new plan describing the rover activities for the
next day.  These plans must abide by resource limitations,
safety rules, and temporal constraints.  The objective is to
achieve as much science as possible, choosing from a set of
observation requests that oversubscribe rover resources.  In
order to accomplish this objective, given the short amount of
planning time available, the MAPGEN (Mixed-initiative
Activity Plan GENerator) system was made a mission-
critical part of the ground operations system.

MAPGEN is a mixed-initiative system that employs
automated constraint-based planning, scheduling, and
temporal reasoning to assist operations staff in generating
the daily activity plans.  This paper describes the adaptation
of constraint-based planning and temporal reasoning to a
mixed-initiative setting and the key technical solutions
developed for the mission deployment of MAPGEN.

Introduction
In January 2004, NASA landed rovers on the surface of
Mars at two widely separated sites.  Their mission: to
explore the geology of Mars, especially looking for
evidence of past water.  At the time of writing, signs of
water-based modification have been discovered at both
sites.  Although well past their design lifetime, both rovers
are still healthy, and the mission is continuing.

Mars Exploration Rover (MER) operations are an
interesting application from an automated planning
perspective.  A number of ongoing planning research
efforts are aimed at automating rover operations.  At the
same time, mission operations are traditionally done
manually; engineers develop command sequences on the
ground and send them to the spacecraft, which executes
them.  MER, due to the complexity of the mission and the
aggressive operations plan, challenged this traditional
approach.  So, while onboard decision-making capabilities
were not considered, an opportunity did open up for
ground-based automation, including automated planning.
This led to the development of a mixed-initiative,
constraint-based planning system called MAPGEN
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(Mixed-initiative Activity Plan GENerator), which has
played a critical role in generating the daily activity plans
throughout the nominal and extended mission.

Traditional AI Planning systems are given an initial state
and a goal state and are expected to automatically produce
a plan of actions that will achieve the goal state starting
from the initial state.  While this approach is suitable for
fully automated operations, MER operations involved
significant human participation in plan evaluation and
construction.  Consequently, the paradigm of mixed-
initiative planning (Burstein and McDermott, 1996;
Ferguson, et al., 1996; Myers, 1996; Veloso, 1996) was
found to be more suitable.

Another characteristic of MER operations is the
involvement of metric time and other numerical quantities.
AI Planning has traditionally focused on symbolic systems,
generally avoiding the use of numerical quantities.  In
recent years, the community has recognized that practical
problems often involve quantitative reasoning (Smith,
2003). Among the approaches that address these issues is
constraint-based planning (Smith, et al., 2000).

As yet, there are few practical examples of mixed-
initiative constraint-based systems; thus, it is an open topic

Figure 1: MER Rover



which features or capabilities are needed in such systems.
In this paper, we report on the application of a mixed-
initiative, constraint-based planning system to the task of
tactical planning for the Mars Exploration Rover (MER)
mission.  We believe this constitutes an important case
study that will be valuable to the community in elucidating
requirements for such systems and identifying future
research directions for mixed-initiative planning.

MER Rovers
The MER rovers (see Figure1), Spirit and Opportunity, are
solar-powered (with a storage battery) and incorporate the
“Athena” payload, which includes the following
instruments: panoramic cameras (Pancam), navigation
cameras (Navcam), and a miniature thermal emissions
spectrometer (MiniTES), which are mounted on the mast
that rises above the chassis; hazard cameras (Hazcams)
mounted on the front and rear of the rover; microscopic
imager (MI), Möessbauer spectrometer (MB), alpha
particle X-ray spectrometer (APXS), and rock abrasion tool
(RAT), which are mounted on the robotic arm.

The rovers are equipped with extensive communication
facilities, including a High Gain Antenna and Low Gain
Antenna for Direct-To-Earth transmission and reception, as
well as an UHF antenna for communicating with satellites
orbiting Mars.  Communication opportunities are
determined by each rover’s landing site and the Deep
Space Network schedule or orbital schedules for the
satellites.

An onboard computer governs the operation of
subsystems and provides data handling, system state
tracking, limited obstacle avoidance, and so forth.  Because
of its large power draw and the rover’s limited energy
supply, the computer is used judiciously.

Mission Operations
For this mission, the communication cycle was designed so
that both rovers could be commanded every sol (i.e., Mars
day, which is 24 hours, 39 minutes, and 35.2 seconds).
The time for ground-based mission operations is severely
limited by the desire to wait until up-to-date information is
available but nevertheless finish in time to get the
command load to the rover.  During the nominal mission,
this left 19.5 hours for ground operations.

In this process (shown in Figure 2), the engineering and
science data from the previous sol are analyzed to
determine the status of the rover and its surroundings.
Based on this, and on a strategic longer-term plan, the
scientists determine a set of scientific objectives for the
next sol.  At this stage only rough resource guidance is
available.  Hence, the scientists are encouraged to
oversubscribe to ensure that the rover’s resources will be
fully utilized in the final plan.

In the next step in the commanding process, the science
observation requests are merged with the engineering
requirements (e.g., testing the thermal profile of a
particular actuator heater) and a detailed plan and schedule
of activities is constructed for the upcoming sol.   The plan
must obey all applicable flight rules, which specify how to
safely operate the rover and its instrument suite and remain
within specified resource limitations. It is in this step that
MAPGEN is used.

Once approved, the activity plan is used as the basis to
create sequences of low-level commands, which coordinate
onboard execution.  This sequence structure is then
validated, packaged, and communicated to the rover.  This
completes the commanding cycle.

MER activity planning
Generating activity plans for a rover situated on a different
planet is a unique problem.  The remote location and
expense of getting there require stringent rules for
operations in order to minimize risk of vehicle impairment
or loss.  At the same time, these very factors drive a desire
to maximize the amount of science done, as the expected
mission lifetime is limited.  Compared to spacecraft, rover
surface operations are constrained by a much larger and
more complex set of safety flight rules and mission
policies.

Though the observation requests and the command
sequences are constructed by teams of scientists and
engineers, a single person, called the Tactical Activity
Planner (TAP), has primary responsibility for producing
the activity plan.  Analyzing the previous sol’s data and
deciding what science observations to do next sol can take
a long time; likewise, constructing the sequence structure is
very time-consuming.  This leaves little time for activity
planning and puts the TAP under pressure to, on the one
hand, construct a high-quality plan that maximizes science
return and, on the other hand, not hold up the sequencing
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team.  Figure 2 shows the limited time given to activity
planning process within a commanding cycle.

As a planning problem, the MER activity plan
generation process has the following key characteristics:
•      Optimization    :  The objective is to achieve the

maximum number of highest-priority science goals,
selected from a request set that oversubscribes rover
resources.

•      Temporal Constraints    :  Specified activities are
constrained in continuous time, both absolutely and
relatively.  Furthermore, flight rules impose mutual
exclusion requirements.

•      Resources    :  Complex continuous quantity resources,
such as energy, play a major role.

•      Hierarchical Activities    :  High-level activities are
decomposed into specific temporal configurations of
lower-level activities.

•      Size    : The number of low-level activities in an
activity plan is typically in the high hundreds to low
thousands.

•    Incomplete problem definition    : Preferences and
other subjective solution criteria cannot be specified
up front.

Outline
The rest of this paper is organized as follows.  First, we
describe the overall characteristics of the MAPGEN
system.   Second, we describe the system architecture.  The
subsequent sections focus on the key aspects of time
handling and planning search methods.  We conclude with
remarks on results, lessons learned, future research
directions, and related work.

MAPGEN: System Characteristics
Traditionally, spacecraft operations’ planning is done
manually; utilizing software tools primarily for simulating
plan executions and identifying flight rule violations.  The
time criticality and complexity of MER operations,
combined with advances in planning and scheduling
technology, provided an opportunity for deploying
automated planning and scheduling techniques to the Mars
rover ground-operations problem.

Mixed-initiative planning
In traditional automatic planning, the operator loads in the
goals and initial conditions, pushes a button, and waits for
a complete plan.  Due to the need to bring human expertise
in mission planning and science operations to bear on
solving this complex operational problem, this approach
was deemed unacceptable; consequently, we adopted a
mixed-initiative approach for this application.

There were many aspects to the need for human
involvement. Mission operations rely on a number of
checkpoints and acceptance gates to ensure safety.  For
activity plans, the critical gate was the activity plan
approval meeting where the fully constructed plan would

be presented, critiqued, and then, hopefully, accepted,
possibly with minor modifications.  As a result, the TAPs
had to be able to understand and defend the validity of the
plan; however, initial user tests indicated that a plan
constructed automatically in its entirety was too difficult to
analyze by the human operator, especially given the
inherent time pressures.  The TAPs, therefore, prefer to
incrementally construct a plan in small, understandable
chunks.

Another concern was the infeasibility of formally
encoding and effectively utilizing all the knowledge that
characterizes plan quality.  One aspect of plan quality
involves a rich set of science preferences, including
everything from preferences on absolute and relative
scheduling of activities to preferences on which
combinations of science observation cuts and changes are
least painful in the face of strict resource limitations. A
second, and more complex, aspect of quality is concerned
with global characteristics of a plan, such as acceptable
profiles of resource usage, and the estimated complexity of
turning a plan into a command sequence structure.

The role of mixed-initiative planning in MAPGEN is
very much in the spirit of the original notion of such
planning (Burstein and McDermott, 1996); the purpose is
to support collaboration between a human user and an
automated system to build a high quality activity plan.  But
it is worth noting certain characteristics of the MAPGEN
approach.  Unlike some variations of mixed-initiative
planning, the MAPGEN system does not actively solicit
user assistance during planning.  The primary role of the
operator is to direct and focus the plan construction process
and to provide qualitative evaluation of plans.  The system
makes automated planning capabilities available to the user
and performs potentially tedious tasks, such as expanding
activities and maintaining constraints.  The intended
interaction between user and system is that the system
handles expansion and constraint enforcement constantly in
the background, while automated plan construction is user
invoked.

Key Features
As an integral part of a large mission operations system,
MAPGEN’s capabilities have evolved over time with the
rest of the ground data system.  The current user features
are the end result of a journey through the design space,
guided by feedback from the users in the course of many
tests and subject to the changing landscape of the overall
operations system.  We can summarize the primary
features as follows:
• Plan editing:   Both activities and constraints can be

modified, via direct manipulation, form editing, or
menu items.

• Plan completion:  The selected subset of activities
can be completed, in the sense that all subgoals are
achieved and any necessary support activities are
added to the plan.

• Active constraints:  During plan editing, the formal
constraints and rules are actively enforced.  Thus,
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when one activity is moved or modified, other
activities are modified as needed to ensure the
constraints are still satisfied.

In the course of developing these capabilities, it became
clear that the following additional features were needed.

Hopper: In order for the user to incrementally plan, a
staging area, called the hopper, is needed for activities that
have not yet been made part of the plan.

Goal rejection: If a planning request cannot be
completed, MAPGEN can reject lower-priority activities to
make room for higher-priority activities in the plan. There
is also a timeout mechanism to terminate any excessively
long search, after which incompletely planned activities are
rejected.   Rejected activities are placed in the hopper and,
thus, continue to be available for planning.

Constrained-move: The user has the capability of
moving activities to preferred locations using a drag-and-
drop mechanism.  The system supports the active
maintenance of constraints by automatically adjusting other
activities as needed to ensure plan validity.  In a regular
constrained move, the moving activity pushes mutually
exclusive activities ahead of it.  In a variation, called a
super-move, the moving activity can jump over such
activities.  In both cases, visual feedback about the possible
range of movement is provided and the user is prevented
from moving outside this range.

Minimal perturbation: Actively enforcing constraints
gives rise to choices, as the impact of modifications can be
handled in different ways. For example, following a
constrained-move, there are many ways to move other
activities that would ensure that the resulting plan satisfies
all temporal constraints.  For continuity and to facilitate
user understanding, the system attempts to minimize
change by keeping activities as close as it can to their
previous positions, while satisfying the constraints.

MAPGEN Architecture
The MAPGEN system has five primary components, some
of which were pre-existing software modules.  One of the
requirements for infusing this technology into the mission
was the use of an existing interactive plan editor from JPL,
called APGEN (Maldague, et al., 1998), as the front end of
MAPGEN.  The core of the plan representation and
reasoning capabilities in MAPGEN is a constraint-based
planning framework called EUROPA (Extendable Uniform
Remote Operations Planning Architecture), developed at
NASA Ames Research Center (Jónsson, et al., 1999; Frank
and Jónsson, 2003).

The new functionality in the MAPGEN system involves
the interface between these two subsystems, support for
extensions to the APGEN graphical user interface to
provide the mixed-initiative capabilities, and more
sophisticated plan search mechanisms that support goal
rejection, priorities, and timeouts.  The APGEN and
EUROPA databases, which remain separate, are kept
synchronized; changes may be initiated by either database.

Finally, we considered it expedient to develop an
external tool, called the Constraint Editor, to enter and edit
daily science constraints, since this is not conveniently
supported by the current APGEN graphical user interface.

EUROPA: Constraint-based planning framework
In constraint-based planning (Frank and Jónsson, 2003),
actions and states are described as holding over intervals of
time.  Each state is defined by a predicate and a set of
parameters, as in traditional planning paradigms.  Actions,
which are durative, are also represented by parameterized
predicates.  The temporal extent of an action or state is
specified in terms of start and end times.  For example,
specifying that the panorama camera heater needs to be on
for 25 minutes, starting at 8:00, could be written as:
holds(8:00,8:25,pan_cam_htr(on,0:25))

However, in constraint-based plans, each time and
parameter value is represented by variables, connected by
constraints.  Consequently, the statement would be:
holds(s,e,pan_cam_htr(state,dur))
s=8:00, e=8:25, state=on, dur=0:25

This approach allows specifying, for example, that the
heater must be on for 30 minutes, can happen within a
certain time range, and must happen before, by at most 5
minutes, a given use of the camera:
holds(s1,e1,pan_cam_htr(state,dur1))
s1 ∈ [8:00,8:30], state=on, dur1=0:30
e1=s1+dur1
holds(s2,e2,pan_cam(tgt,#pics,dur2))
s2 ∈ [9:20,9:40], tgt=rock, #pics=8
e2=s2+dur2
s2-e1 ∈ [0:00,0:05]

Constraint reasoning plays a major role in the constraint-
based planning paradigm.  Any partial plan, which is a set
of activities connected by constraints, gives rise to a
constraint network. Constraint-based inference can provide
additional information about plans, reduce the number of
choices to make and identify dead-end plans early.
Achieving arc consistency is one commonly used example
of applicable constraint reasoning methods.

Typically, the temporal variables and associated
constraints give rise to a simple temporal network (STN),
or can be reduced to one by decision choices that enforce



the mutual exclusion constraints.  For STNs, it is possible
to make the network arc consistent and to determine
consistency in low-order polynomial time, using the
Bellman-Ford algorithm (Dechter, Meiri, and Pearl, 1991;
Cormen, Leiserson, and Rivest, 1990).

In constraint-based planning, model rules are specified in
terms of interval statement and constraint schemas.  For
example, a rule might specify that a camera heater is
needed between 0 and 5 minutes prior to any camera use
that occurs before noon.  In essence, the rule would state
that for any occurrence of:
holds(s2,e2,pan_cam(tgt,nrpics,dur2))

where s2 is necessarily less than 12:00, there must exist a
holds(s1,e1,pan_cam_htr(state,dur1))

such that:
s2-e1 ∈ [0:00,0:05]

Constraint schemas can also apply to single interval
statements, e.g., for any occurrence
holds(s1,e1,pan_cam_htr(state,dur1))

we ensure the heater is never on for more than two hours:
dur1 ∈ [0:00,2:00]

The EUROPA framework performs sound constraint
reasoning and provides a mechanism for firing applicable
domain rules.  Search methods and other techniques for
manipulating partial plans build on this framework.

In constraint-based planning, explicit temporal
constraints fall into three categories: model constraints,
problem-specific constraints, and expedient constraints.
The model constraints encompass definitional constraints
and mutual-exclusion flight rules.  In MER, for example,
the expansion of activities into sub-activities gives rise to
temporal relations between the parent and its children.

The problem-specific constraints comprise “on the fly”
relations between specific activities in a planning problem.
In MER, these constraints, often called “daily constraints”,
related elements of scientific observations in order to
capture the scientists’ intent. As an example, several
measurements of atmospheric opacity may be required to
be at least 30 minutes apart.  These constraints are entered
using the Constraint Editor tool, described below.

The expedient constraints are those resulting from
arbitrary decisions made to guarantee compliance with
higher-level constraints that cannot be directly expressed in
an STN.  For example, a flight rule might specify that two
activities are mutually exclusive (such as moving the arm
while the rover is moving).  This is really a disjunctive
constraint, but satisfying it will involve placing the
activities in some arbitrary order.  Expedient constraints
are typically added during search in automated planning.

APGEN
APGEN (Activity Plan GENerator) is an institutional tool
at JPL and has been used in a number of spacecraft
missions.  It has a large number of features, but the core
capabilities can be summarized with three components:
• Activity plan database: A set of activities, each at a

specific time.  This database has no notion of

constraints between activities, but does support
context-free activity expansion.

• Resource calculations: A method for calculating,
using forward simulation, resource states that range
from simple Boolean states to complex numerical
resources.

• Graphical user interface:  An interface for viewing
and editing plans and activities.

To deploy APGEN for a particular mission, the mission-
specific information is stored in an adaptation, which can
be viewed as a procedural domain model.  It defines a set
of activity and state types and then defines a way to
calculate resource states from a given set of activities.  In
addition, it defines a set of “constraints” on legal
combinations of resources.  The constraints and resource
calculations are only useful for passively identifying
problems with a plan; APGEN does not have the capability
to reason with this information in order to help fix the
identified problems.

Synchronization
The plan databases in APGEN and EUROPA remain
separate.  Consequently, a component is needed for
translating information between the two plan databases.
The translation is straightforward for the most part.
However, it is worth noting that a constraint-based plan
invariably has temporal flexibility, in the sense that start
and end times need not necessarily be grounded.  At the
same time, APGEN can only represent grounded times;
i.e., each activity has a single grounded start and end time.
The challenging issues involved in mapping between
grounded and flexible temporal representations are
addressed in the “Time Handling” section.

Automated planning and reasoning
The functionality provided by the MER-specific planning
and reasoning component can be split into two categories.
One consists of extensions of existing functionality in
APGEN.  An example of this is the extension of the
activity parameter editing capability to reject any changes
that violate constraints, with a warning to the user.  The
other category consists of new functionality, typically
accessible via the user interface.  These include
automatically planning a selected subset of the activities in
the hopper. Aspects of the functionality provided are
discussed further below in the “Planning Methods” section.

Constraint Editor
The APGEN plan-editing interface has no notion of
variables and constraints in the traditional AI sense.  This
raised the issue of how to get the daily constraints into the
reasoning component of MAPGEN.  These daily
constraints were needed to coordinate the activities in
scientific observations, and these could vary in unforeseen
ways.  For example, it might be specified that two specific
measurements should be taken within 10 minutes of each



other.  This required an ability to enter and modify
temporal constraints dynamically.

To resolve this, an external, temporal-constraint editing
tool, called the Constraint Editor, was developed as an
augmentation to the APGEN interface.  In this tool, users
can view activities and existing temporal constraints, and
then add, delete, or edit constraints.

Two issues arose with respect to the Constraint Editor.
First, the sheer number of constraints initially appeared
unmanageable for manual entry.  However, it turned out
this was due to a “Cartesian Product” effect.  By grouping
the activities into sets and then specifying relations
between the sets, it was possible to enter huge numbers of
similar constraints simultaneously.  Second, the TAP
would occasionally enter constraints that were inconsistent.
Often it was difficult for the TAP to know what caused this
inconsistency.  Thus, when an inconsistency was detected,
a description of a minimal nogood, which corresponds to a
negative cycle in the temporal network, was extracted to
present to the user and allow the user to delete the
inconsistent constraint(s).

Time Handling
The most challenging aspect of building activity plans is
finding a valid schedule for the activities that are related by
constraints from various sources.  For example, flight rules
may require heaters or the CPU to be on in support of
activities.  Additionally, directly specified constraints may
require that activities be done in a particular order and at a
particular time in order to satisfy the science intent.  Other
external factors also impact scheduling; chief among those
are energy limitations and communication opportunities.

Activities use different amounts of energy, depending on
when they occur, due to heaters being needed only during
cold times of the day.  In addition, some schedules will
cause solar power to be discarded (shunted) to avoid
overcharging the battery.  Modifying when activities are
scheduled could make use of this wasted energy.

Activity scheduling also interacts with communication
opportunities, as one obviously cannot downlink data from
activities that have yet to be executed.  The downlink of
much of the science data can be postponed for days and
even weeks, without any substantial impact; however,
certain critical data are required for making operational
decisions.  Suppose, for example, that one of the activities
in the plan is a drive to approach an interesting rock.  The
intent is that arm instruments will be deployed on this rock
the following sol.  Since the MER rovers cannot
autonomously place instruments, operators must manually
generate arm-movement command sequences.  This
requires operators to have a good picture of the workspace
around the arm.  Thus, an activity that takes a picture of the
workspace after the drive must be done prior to a suitable
communication opportunity such that the data products will
be available when needed to plan the arm movements.

Since temporal preferences and other subjective solution
criteria are not encoded in the domain model, operators

have the responsibility to take them into account.  The end
result of all of this is a need for schedule editing and
automated scheduling support in order to handle this
challenge in an effective fashion.

Flexible plans
In constraint-based planning, partial plans have an
underlying simple temporal constraint network (Dechter,
Meiri, and Pearl, 1991).  The consistency of STNs can be
determined by checking for arc consistency.  Furthermore,
each value in an arc-consistent temporal variable domain
appears in at least one legal solution for the temporal
network.  The set of such values defines a temporal interval
that can be represented by its upper and lower bounds.

Consider a plan where all decisions have been made,
except for grounding temporal variables appearing only in
simple temporal constraints.  Finding a fixed solution is
then an easy matter of choosing a value for any variable
within its legal bounds, re-enforcing arc consistency,
choosing a value for another variable, and so on.

It is not necessary to immediately ground the variables;
plans with temporal variables left ungrounded are called
flexible plans.   In MAPGEN, we utilize the fact that the
underlying plans are flexible.  The main benefit is that it
allows easy editing of the placement of activities in the
plan, e.g., by dragging activities around in the interface.  In
a later section on constrained moves, we will discuss how
users can modify the placement of activities within a
flexible plan.

Minimal perturbation plan instantiation
The MAPGEN user interface can only display a single
instantiation of a flexible plan.  This raises the issue of
which instantiation should be chosen.  The method we
developed is based on minimizing the departure from a
reference  schedule, which need not necessarily be
consistent.

Consider the example case in which the user has just
added an ordering constraint between two activities that
overlap in the current instantiated plan.  The constraint is
inconsistent with respect to the displayed plan, but let us
assume the constraint addition does not make the
underlying flexible network inconsistent.  The objective is
then to find a new instantiation that is close to the earlier
instantiation and consistent with the new constraint.

Efficiently finding a preferred instantiation is a subject
of ongoing research (Morris, et al., 2004), but an
approximate technique was found to work well in
MAPGEN.  This technique employs a greedy heuristic,
where variables are instantiated in some order; for each
variable, the legal value that is closest to the preferred
placement value is chosen.  The algorithm, described in
detail in (Bresina, et al., 2003), is outlined here:



1. Save all the current positions in a temporary list.
2. Remove all the current position constraints and re-

propagate.
3. For each timepoint x with saved position t do:

if t is within the STN bounds for x
then add a position constraint setting x to t

else if t < the lower bound (lb) for x
then add a position constraint setting x to lb

else if t > the upper bound (ub) for x
then add a position constraint setting x to ub

Propagate the effect of the new constraint

Between instantiations, the network is propagated.  Not
only is this guaranteed to yield a consistent instantiation
whenever the underlying flexible network is consistent, but
the result was found to be very intuitive to users.  See
Figure 4 for an example application of the algorithm.

Constrained moves
One very commonly used plan modification is to move an
activity to a new time.  As long as the activity is moved
only within the flexibility range defined by the domain in
the underlying arc-consistent flexible plan, the result is
necessarily another consistent instantiation.  This
observation gave rise to the notion of a constrained move.

During a constrained move, the system actively restricts
the movements of an activity to stay within the permitted
range.  Then, once the user places the activity, the minimal
perturbation update is applied to all affected activities,
yielding a new valid plan instance.

Note, however, that the consistency enforcement takes
into account all the constraints that determine the flexible
plan.  This includes expedient constraints resulting from

decisions about how to order mutually exclusive activities.
Since these decisions are maintained, the ordinary
constrained move has the effect of “pushing” the excluded
activities ahead of it. However, sometimes the TAP wants
to reorder mutually excluded activities.  To support this,
we provided a variation, called a super-move, that
temporarily relaxes expedient constraints until the move is
completed.  This amounts to a simple form of replanning;
this topic is further discussed in the next section.

Planning Methods
In MAPGEN, the use of planning, in the sense of using
search to find complete and valid plans, is in some ways
different from more traditional applications.  This stems
from both the mixed-initiative nature of the tool and the
specifics of the domain.

In the MER domain, the notion of traditional subgoals
was almost entirely absent.  Instead, activities had fixed,
HTN-like expansions, defined in the mission activity
dictionary.  Context-dependent activities, such as those
needed to establish preconditions, were rare, and were
typically added manually.  The chief exceptions were the
management of the CPU, which was handled by the
automated planning system, and heater activities, which the
user could request the system to automatically create,
based on the current thermal policies.

Another key factor in the design of MAPGEN planning
methods was that the set of science observation requests
oversubscribes available resources and, thus, each
observation request had a given priority that had to be
taken into account.

Finally, the planning methods had to be accessible to the
user and had to ensure timely responses to user requests.
The user-accessibility requirement led to a number of
different planning methods, and the response-time
requirements led to an anytime-like search technique.

Core planning algorithm
The main decisions made by the MAPGEN planning

algorithm are whether to include an activity in the plan,
along with all its sub-activities, and for each included
activity and sub-activity, how to order it in relation to
mutually exclusive activities.    For each ordering decision,
the planner inserts an expedient temporal constraint to
enforce it.  The planner maintains a stack of all decisions
made, backtracking if necessary in order to achieve a
consistent plan.

There are several complicating factors in the search.  As
noted above, the problem is oversubscribed and science
observations are prioritized.  A simplistic approach is to
use the standard backtracking search that prefers to works
on higher priority activities and prefers not to reject
activities.  This will easily handle direct conflicts between
higher and lower priority activities, but becomes intractable
when search is required to prove that there is a conflict
between a lower priority activity and a collection of higher
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priority activities. To avoid the potentially exponential
search, the basic backtracking method was modified to
provide an incomplete variation of dynamic backtracking
(Ginsberg, 1993).  However, instead of collecting and
combining nogoods, the search “charges” backtracks to
associated top-level activities.  When a top-level activity
exceeds its allotment, which varies depending on its
priority, it is deemed “troublesome” and rejected.   Due to
the possible interleaving of decisions stemming from
different top-level activities, this requires a form of
dependency-directed blame assignment and cleanup.

Response time guarantees
The non-systematic rejection of “troublesome” activities
was essential for balancing the amount of search effort
done and the quality of the solution.  However, the time
taken to complete the search can still vary greatly, both
depending on the size of the problem and on the level of
interaction between activities.

To provide a guaranteed response time, the search
includes a global timeout mechanism.  The key element in
this mechanism is the cleanup done after the search is
halted, which again requires dependency-directed methods.

The timeout rejection methods were infrequently
triggered in practice, because the MER users typically
planned incrementally in small chunks.

Heuristic search guidance
As noted above, the search was biased to work on high
priority activities before low priority ones.  Virtually no
other heuristics were used for determining the order in
which open decisions were tackled.

When it came to making activity placement choices, i.e.,
expedient ordering decisions, the heuristic guidance used
was based on minimizing perturbation from a reference
schedule.  The motivation behind this was twofold.  One
was that it would be intuitive to the user, as this approach
would attempt to preserve the temporal placement of
activities.  The other motivation was that it would allow
users to “sketch out” a plan in the hopper and then ask the
system to complete the plan.

An important issue of foresight arose with respect to
incremental goal achievement.  If earlier goals are achieved
completely without regard to the needs of later goals, then
arbitrary choices may be made that preclude the later goals.
For example, two early goals A and B may have no direct
ordering, but a later goal C may need to occur after A and
before B.  Without foresight, the planner may choose to
order B before A and, thus, prevent the later achievement
of C.  This can be remedied by enforcing constraints
arising from items in the hopper.  In our example, this
would ensure that A comes before B.  However, this can
have the undesirable consequence of eliminating valid
plans from consideration.  For example, if other factors
prevent A from coming before B, then the constraint
involving C will eliminate the option of placing B before A
and rejecting C.  The approach we took was to initially

obtain a consistent schedule for all activities, including
those in the hopper, based only on the daily constraints.
The result was used as the initial reference schedule.  Thus,
the solution of early goals was biased by the constraints on
activities still in the hopper, but not prevented by them.

Variations on a theme
As noted above, the automated planning capability was
presented to the user in terms of a few different options.

One variation was to plan everything, thus leaving it
entirely up to the automated search to find a plan that
achieved as much science as possible.  This functionality is
most like what traditional automated planning methods do.
This capability functioned well and yielded near-optimal
plans in terms of the number of science observations in the
plan.  However, the plans tended not to have an intuitive
structure and, therefore, did not allow the TAP to explain
the plan structure during the approval meeting.
Additionally, they were often sub-optimal with respect to
preferences and other solution quality criteria that were not
encoded in the domain model or the priorities.
Consequently, it was rarely used.

Instead, the users often applied a variation where the
user could select a set of observation requests not in the
plan and request that these be inserted into the partial plan
already in place, such that all rules were satisfied.  While
repeated application of this led to a result similar to the full
planning variation, users found this more intuitive, in part
because it allowed them to fine-tune and understand the
incremental plans as they were built.  Furthermore, this
made it possible for the users to have a complete plan
ready at just about any time.

Another variation, applicable only to individual
activities, allowed the user to select an activity in the
hopper and then choose an approximate temporal
placement for it in the plan.  The planning algorithm would
then treat the user-chosen time as heuristic guidance and
search for a plan where the selected activity was as close to
the desired time as possible.

While users considered the super moves, mentioned
above, a part of the plan editing capabilities, they are, in
fact, a small replanning operation.  During a super move,
the activity being dragged, along with all its sub-activities
and subgoals, is removed from the plan.  Then, when the
user drops the activity at the end of the move, to place it,
the planner is asked to find a plan where the moved activity
is placed as close as possible to the chosen time.  In the
event that the placement fails, the plan is left unchanged.

Concluding Remarks
In this final section, we describe the results of deploying
MAPGEN to the MER mission, lessons learned from this
experience, future research directions to address some of
these lessons, and end with mention of some related work.

The MAPGEN deployment constitutes a major advance
in ground support tools for NASA missions.  It has



demonstrated that automated reasoning techniques can be
combined with human knowledge and insight in a way that
greatly benefits mission operations.  MAPGEN has been
used throughout the nominal and extended Mars
Exploration Rover mission as an essential part of the
ground operations process.  Furthermore, it has had a
significant impact on the science return from the mission;
subjective estimates, from both science investigators and
mission managers, indicate a 20-40% increase in science
return over the manual approach used in Mars Pathfinder.

The system has also changed the way TAPs approach the
planning process.  With the added efficiency resulting from
the tool, they have had enough time to explore alternative
“what-if” scenarios and to perform solution fine-tuning,
thus achieving a higher-quality plan.  Moreover, they are
more willing to incorporate late-breaking information,
given their new confidence in being able to rebuild the plan
within the available time.  This became critical once the
mission was no longer operated on Mars time, because
planning often had to start before the downlink information
was fully processed.  In fact, there were sols when the
entire plan had to drastically change at the last minute due
to revised information, and without MAPGEN, the TAP
would not have had time to generate a new plan.

Discussions with mission operators suggest that
MAPGEN has raised the bar on what will be expected from
ground tools in future missions.

Planning technology lessons
In the course of this work and system evolution, we
acquired new perspectives on what worked well, what
could be enhanced, and how to approach a future
application of this kind.

It became clear that a mixed-initiative system was the
right choice for reasons beyond those that led to its
adoption.  The human component provided for adaptability
and flexibility in the use of the tool that allowed us to cope
with evolving and changing requirements.  Moreover, the
ground operations process is not perfect, and the mixed-
initiative framework provided scope for workarounds to
deal with shortcomings, perhaps temporary, in other areas.

Another lesson we learned is that planning in the
traditional sense is not necessarily the most prized feature
from the user’s perspective.  At least as important (perhaps
more so) are features like unplanning, replanning, active
constraint enforcement, and constrained-moves.  Moreover,
some relatively mundane planning, such as determining
CPU-on periods, may be more valuable to the user than
complex, context-sensitive goal achievement.

One thing that is clear is a need for the automated
reasoning component to provide better explanations of its
behavior, particularly explanations of why the planner
could not achieve something, such as inserting an activity
in the plan at a particular time, or moving an activity
beyond the enforced limit.  Such a facility would have
greatly helped during training, in addition to increasing the
TAPs effectiveness during operations.  The system did
have a form of explanation of inconsistency by presenting

a minimal nogood.  While the TAPs found it to be very
useful when editing constraints, only the developers used
the facility in the context of constructing and modifying
plans, for the purpose of debugging the system.  The reason
is that in this context, the explanation typically involved
complex chains of activities and constraints that could not
easily be grasped.

Another need is a way for the user to express, and the
system to achieve, temporal preferences.  MAPGEN did
have a limited capability in this regard in terms of the
reference schedule.  The operator could also establish more
complex preferences by an iterative process of relaxing or
tightening constraints, but this was time-consuming and
one could envisage an automatic facility to achieve this.

An attempt to automatically resolve resource violations
had only limited success.  Part of the difficulty was
obtaining sufficient information about resource usage from
the complex legacy resource computation modules.  We
also found that the more important resources, such as
battery energy, were highly nonlinear and involved
intricate calculations that take into account such things as
saturation and thermal effects that go beyond the relatively
simple models that have been considered thus far in such
approaches as envelope calculation (Muscettola, 2002).
Given the current state of the art, a more fruitful approach
might be to provide the mixed-initiative user with a suite of
heuristic techniques that could be judiciously employed to
more efficiently improve the resource usage profile, such
as a technique for adjusting the schedule to make better use
of shunted energy.

It would also be useful for the system to be able to
answer trade-off queries such as the following examples:
• What needs to be unplanned (in priority order) to

enable X minutes more of contact science with the
arm instruments, or to enable X minutes more time
for driving?

• How many sectors of this panorama can fit into the
current plan?

• In order to fit in another panorama sector, what
needs to be unplanned, or how many minutes does
the contact science have to be reduced?

Finally, the work on MAPGEN has reinforced that when
it comes to building model-based systems for complex
domains, the issues of knowledge acquisition and domain
knowledge validation remain open.  End users of mission-
critical applications demand a measure of validation of
such systems that rely on representing and reasoning about
knowledge that has, in the past, been kept by mission
operators.

Related Work
Besides the mixed-initiative literature cited earlier, there
are few comparable mission-planning systems that employ
general planning techniques.  In Deviser (Vere, 1983),
planning was done at a very high level of abstraction.
Nonetheless, even with only a few hundred activities in the
plan for Voyager’s encounter with Uranus, the planner
took 40 CPU hours on a LISP machine, making real-time



planning infeasible. In 1999, PlanIT-2 (Eggemeyer et al.
1998) was used for sequencing activities on the Mars
Pathfinder mission.  AI search was deemed unnecessary,
and the system provided only basic constraint maintenance
(Grenander, 2004).  Other work related to planning and
scheduling in the space domain includes the seminal
Remote Agent system (Muscettola, et al., 1998), and the
recent Autonomous Science Experiment (Cichy, et al.,
2004).  However, these systems addressed onboard rather
than ground-based planning.
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